Search results for "higher order linearization"

showing 2 items of 2 documents

Determining an unbounded potential for an elliptic equation with a power type nonlinearity

2022

In this article we focus on inverse problems for a semilinear elliptic equation. We show that a potential $q$ in $L^{n/2+\varepsilon}$, $\varepsilon>0$, can be determined from the full and partial Dirichlet-to-Neumann map. This extends the results from [M. Lassas, T. Liimatainen, Y.-H. Lin, and M. Salo, Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations, Rev. Mat. Iberoam. (2021)] where this is shown for H\"older continuous potentials. Also we show that when the Dirichlet-to-Neumann map is restricted to one point on the boundary, it is possible to determine a potential $q$ in $L^{n+\varepsilon}$. The authors of arXiv:2202.0…

Mathematics - Analysis of PDEsApplied Mathematics35R30 35J25 35J61FOS: Mathematicsinverse problemyhtälötpartial datasemilinear elliptic equationhigher order linearizationinversio-ongelmatAnalysisAnalysis of PDEs (math.AP)
researchProduct

An inverse problem for the minimal surface equation

2022

We use the method of higher order linearization to study an inverse boundary value problem for the minimal surface equation on a Riemannian manifold $(\mathbb{R}^n,g)$, where the metric $g$ is conformally Euclidean. In particular we show that with the knowledge of Dirichlet-to-Neumann map associated to the minimal surface equation, one can determine the Taylor series of the conformal factor $c(x)$ at $x_n=0$ up to a multiplicative constant. We show this both in the full data case and in some partial data cases.

osittaisdifferentiaaliyhtälötMathematics - Analysis of PDEsquasilinear elliptic equationApplied Mathematicsminimal surface equationFOS: Mathematicsinverse problemyhtälötAnalysis35R30 (Primary) 35J25 35J61 (Secondary)higher order linearizationinversio-ongelmatAnalysis of PDEs (math.AP)
researchProduct